Quantification of cerebral arterial blood volume using arterial spin labeling with intravoxel incoherent motion-sensitive gradients.

نویسندگان

  • Tae Kim
  • Seong-Gi Kim
چکیده

Quantification of cerebral arterial blood volume (CBVa) is important for understanding vascular regulation. To enable measurement of CBVa with diffusion-weighted (DW) arterial spin labeling (ASL), a theoretical framework was developed using the effects of intravoxel incoherent motion (IVIM). The pseudo-diffusion coefficient (D*) in the IVIM model was evaluated at 9.4 T in DW-ASL of rat brain under isoflurane anesthesia by variations of both post-labeling delay (w) and magnetization transfer ratio (MTR). D* and its volume fraction decreased at values of w>or=0.3 s, and the normalized apparent diffusion coefficient (ADC) increased with MTR, suggesting that D* is closely correlated with CBVa. Thus, the difference between ASL measurements with and without DW gradients is related to CBVa. The CBVa values measured by this approach were compared with values obtained using the modulation of tissue and vessel (MOTIVE) technique with ASL, which varies MT levels without changing spin labeling efficiency. CBVa values from both methods were highly correlated. The measured CBVa values were linearly correlated with cerebral blood flow (CBF) for a PaCO2 range of 25-50 mmHg; DeltaCBVa (ml/100 g)=0.007 (min-1)xDeltaCBF (ml/100 g/min). The DW-ASL approach is simple and easy to implement for human and animal CBVa studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging and Arterial Spin Labeling MR Imaging in Gliomas

Gliomas grading is important for treatment plan; we aimed to investigate the application of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) in gliomas grading, by comparing with the three-dimensional pseudocontinuous arterial spin labeling (3D pCASL). 24 patients (13 high grade gliomas and 11 low grade gliomas) underwent IVIM DWI and 3D pCASL imaging before operation; maps ...

متن کامل

Quantitative Measurement of Cerebral Perfusion with Intravoxel Incoherent Motion in Acute Ischemia Stroke: Initial Clinical Experience

BACKGROUND Intravoxel incoherent motion (IVIM) has the potential to provide both diffusion and perfusion information without an exogenous contrast agent, its application for the brain is promising, however, feasibility studies on this are relatively scarce. The aim of this study is to assess the feasibility of IVIM perfusion in patients with acute ischemic stroke (AIS). METHODS Patients with ...

متن کامل

Non-parametric intravoxel incoherent motion analysis in patients with intracranial lesions: Test-retest reliability and correlation with arterial spin labeling

Intravoxel incoherent motion (IVIM) analysis of diffusion imaging data provides biomarkers of true passive water diffusion and perfusion properties. A new IVIM algorithm with variable adjustment of the b-value threshold separating diffusion and perfusion effects was applied for cerebral tissue characterization in healthy volunteers, computation of test-retest reliability, correlation with arter...

متن کامل

Simultaneous measurement of cerebral blood flow and transit time with turbo dynamic arterial spin labeling (Turbo-DASL): application to functional studies.

A turbo dynamic arterial spin labeling method (Turbo-DASL) was developed to simultaneously measure cerebral blood flow (CBF) and blood transit time with high temporal resolution. With Turbo-DASL, images were repeatedly acquired with a spiral readout after small-angle excitations during pseudocontinuous arterial spin labeling and control periods. Turbo-DASL experiments at 9.4 T without and with ...

متن کامل

Quantification of cerebral arterial blood volume and cerebral blood flow using MRI with modulation of tissue and vessel (MOTIVE) signals.

Regional cerebral arterial blood volume (CBVa) and blood flow (CBF) can be quantitatively measured by modulation of tissue and vessel (MOTIVE) signals, enabling separation of tissue signal from blood. Tissue signal is selectively modulated using magnetization transfer (MT) effects. Blood signal is changed either by injection of a contrast agent or by arterial spin labeling (ASL). The measured b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 55 5  شماره 

صفحات  -

تاریخ انتشار 2006